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Summary

Aim. Schizophrenia links with altered language structure and may be evolutionary con-
sequence of language development. High heritability of the disease led to recent endeavour 
in explaining the genetic background. Genome-Wide Association Studies (GWAS) indicate 
schizophrenia as highly polygenic disease with many receptor and synaptic plasticity path-
ways engaged.

Material and methods. Here we present a systematic review on the topic of schizophrenia 
GWAS findings and its potential relevance to language skills. We used GWAS catalogue data 
to identify all significant associations in schizophrenia (including selected endophenotypes) 
and studied its relevance in the context of language phenotypes associations.

Results. Among genes involved in language evolution, FOXP1 and ROBO2 were indi-
cated by GWAS as associated with schizophrenia. Evidence on schizophrenia linked SNPs 
was found for association with intelligence, educational attainment, cognitive abilities, and 
language processing brain structures imaging results.

Conclusions. The review discusses hypotheses of language alterations in schizophrenia 
as a consequence of impaired synaptic plasticity and neural network formation.
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Introduction

Genome-wide association studies (GWAS) are often used to study the molecular 
basis of schizophrenia [1]. The core benefit of GWAS is that it enables a wide platform 
examination of single-nucleotide polymorphisms (SNPs) genetic variants in affected 
and control subjects, as well as searching for biological associations without hypoth-
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esised target. Stringent statistical rules are employed to find evidence of associations 
between clinical phenotypes and SNPs in studied individuals.

At the time of writing (April 2023), the GWAS catalogue (https://www.ebi.ac.uk/
gwas/home) featured over 471,482 associations across near six thousand research 
papers. Horwitz et al. [2] found that 6,632 SNPs were associated with psychiatric 
symptoms, with 1,109 reaching the genome-wide statistical significance (as at 2017).

The main challenge of GWAS in schizophrenia is the sample size required to 
empower reaching the genome-wide significance and phenotypic heterogeneity of the 
studied population. Hence, the most reliable data usually comes from multi-centred 
collaborations. The largest study to date [3] revealed 287 valid, independent loci in 
the sample size of 76,755 patients and 243,649 healthy controls. Most reliable findings 
indicated molecular pathways crucial for schizophrenia, like GABA-ergic, dopamin-
ergic and glutamatergic signalling (GRIN2A), calcium signalling (CACNA1C), as well 
as major histocompatibility complex (MHC [4] and FOXP1 [3]) associations. Overall, 
it is estimated that current data can explain over 30% of schizophrenia heritability, 
although gaps exist in understanding the realm of epigenetic and evolutionary aspects 
in populations of different ancestry [5].

It is hypothesized that the first-rank symptoms of schizophrenia such as thought 
steering, auditory verbal hallucinations (AVH) and formal thought disorders (FTDs) 
can have a common background of language disturbance. This phenomenon is com-
plex and can be explained by connectomics, molecular biology, as well as societal 
and cultural factors [6].

Language disturbance is recognised in many psychometric scales [7], such as 
the Positive and Negative Symptoms Scale (PANSS) [8], Scale for the Assessment of 
Positive/Negative Symptoms (SAPS, SANS), Brief Psychiatric Rating Scale (BPRS), 
Thought and Language Index (TLI) [9] or the Operational Criteria Checklist for 
Psychotic Illness and Affective Illness (OPCRIT) [10]. The presence of language dis-
turbance symptoms affects the general prognosis of schizophrenic patients. Formal 
thought disorders (FTDs) are associated with poor social, occupational and neurocogni-
tive functioning, as well as with a higher relapse rate [7]. FTDs are also linked with the 
phenomenological concept of the self, which may coincide with negative symptoms 
severity and cognitive deficits [11]. Auditory verbal hallucinations (AVH), seen in 
60‒70% [12] of patients, may not respond entirely to pharmacological management 
[12] and could be a risk factor for suicide and violent behaviour [13].

The language symptoms of schizophrenia can also be studied in an evolutionary 
context. Schizophrenia can be dated back to the language ability formation in our an-
cestors [14]. In this approach, Crow [15] recognises schizophrenia as the evolutionary 
consequence of language invention (the price that Homo sapiens pay for language. 
The language of the human species could have spawned as a genetic mutation, or 
co-evolved with social skills, shared intentionality or reasoning abilities [16]. Fol-
lowing Enard’s approach [16] (2016), human speech may be an elaborated form of 
vocalisation, which is observed in other species, like birds or mice. Hence, translational 
genetic studies may reveal specific genetic variants that occurred in human evolution 
resulting in human language acquisition. The main restriction of translational studies 
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between human and other species relies on similarity between animals’ vocalisations 
and human language which is not obvious.

Until today, translational studies have identified putative language-related genes 
such as FOXP1 and FOXP2, CNTNAP2, ROBO1 and ROBO2, KIAA0319, GNPTAB, 
GNPTG, SRPX2, ATP2C2, DCDC2, CMIP, DYX1C1, TSC1, NFXL1, and NAGPA 
[16‒18]. However the biology of human language may significantly differ from this 
known in other species.

Linguistic assessment can also be a valuable clinical tool in schizophrenia diagnosis 
and screening for at-risk mental states. Quantitative analysis of speech samples can 
distinguish individuals with schizophrenia from healthy controls by assessing linguistic 
abilities [19]. This observations are reflected in functional brain imaging results, which 
show aberrant connectivity in auditory and language brain networks [20].

In this review, we present the data from GWAS studies, available in the GWAS 
catalogue (as at February 2023). The study aim was to seek for common genes proven 
in GWAS as significant for schizophrenia and involved in language ability formation.

1. Materials and Methods

We searched the GWAS catalogue (https://www.ebi.ac.uk/gwas/) using the query 
‘schizophrenia’ (131 articles, number of associations obtained: n = 6953). Then, we 
scanned each title and abstract for eligibility. We excluded studies conducted on 
mixed-diagnosis populations (e.g. schizophrenia + bipolar disorder or autism) and non-
schizophrenia populations (38 publications, n = 2326 associations), studies assessing 
associations between SNPs and the drug response, eye-movement dysfunctions, aggres-
sion and violence, smoking behaviour, diabetes risk, interaction with cytomegalovirus 
infection, alcohol dependence or niacin metabolism (endophenotypes non-assessed for 
eligibility, 22 publications, n = 431); as not connected with language skills.

The following endophenotypes were included to the analysis: treatment-resistance 
[21, 22], neuroimaging studies [23‒26], age at onset [27‒29], neurocognitive functions 
[30, 31], neurophysiology of brain cortex [32], and schizophrenia symptomatology 
[33‒35]. Next, we made a list of each SNP indicated in a GWAS study and we as-
sessed the association significance according to the GWAS threshold. We removed all 
non-significant associations and duplications (p >10-8; n = 2512).

Overall, 1684 associations localised in 748 genes and 476 intergenic regions 
were found as significant (see supplementary materials). Each of the listed SNPs 
was subsequently searched using the GWAS catalogue to find if it is associated with 
language symptoms in the database. Then each gene was scanned if it is linked with 
language abilities [30].

Moreover, the list of genes perceived as evolutionarily involved in language de-
velopment ( the genes mentioned above, see: [17]) was compared to SNPs and genes 
significant in GWAS for schizophrenia and its selected endophenotypes. A detailed 
process of data selection is available in the diagram (Figure 1). Detailed list of genes 
included in analysis (significantly associated to schizophrenia) is attached in a sup-
plementary file. We used Annotation, Visualisation and Integrated Discovery Clas-
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sification System (DAVID 6.8) [36] to identify biological pathways associated with 
selected genes.

‘Schizophrenia’
126 publiations

(n = 5214)

‘Schizophrenia’
only 71 publiations

(n = 2433)

Schizophrenia
after exclusion of endophenotypes

(n = 2122)

Schizophrenia
statistically significant associations

(GWAS p<10–8)
(n = 1141)

Schizophrenia
(GWAS p<10–8) after removing 

duplicates
(n = 722)

 Notschizophrenia or mixed-diagnosis
populations 55 publiations

(n = 2781)

Endophenotypes non selected for eligibility
19 publikacji

(n = 311)

Non reaching GWAS threshold p<10–8

(n = 981)

Figure 1. The process of data selection in the GWAS catalogue

2. Results

Among the genes influencing the acquisition of language skills in the light of the 
evolutionary approach, only the FOXP1 and ROBO2 genes are indicated as being as-
sociated with schizophrenia [30].

We did not find any significant GWAS results in schizophrenia on majority of 
putative language genes (see Introduction and [17]): FOXP2, CNTNAP2, ROBO1, 
KIAA0319, GNPTAB, GNPTG, SRPX2, DCDC2, CMIP, DYX1C1, ATP2C2, and NAG-
PA. Comparing abovementioned list to genes associated with schizophrenia diagnosis, 
FOXP1 and ROBO2 genes only are involved. Study by Lam et al. [30] (2019) revealed 
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table continued on the next page

association of two SNPs, in FOXP1 (rs62244881, 3p12.3) and ROBO2 (rs3849490, 
3p12.3), with schizophrenia.

We did not find any direct associations between GWAS-significant SNPs for schizo-
phrenia and selected endophenotypes and direct language traits in GWAS catalogue. Evi-
dence of selected SNPs associations was found for intelligence, educational attainment 
and cognitive abilities. Several SNPs were also associated with brain volume imaging, 
including language functional connectivity. Below, SNPs significantly associated with 
schizophrenia and its selected endophenotypes are enumerated in the context of traits 
indirectly linked to language skills. Four, independent studies [37‒40] showed 9 SNPs 
found in schizophrenia studies as related to intelligence. The SNPs are located in 9 
gene areas: SEPTIN3 [39], LINC00461 [40], CALN1, PRKD1, CARMIL1-CMAHP, 
RPS19BD1-CACNA1I, OR2U2D-OR14J1, PTPNR2 [38], and RAI1 [37]. Educational at-
tainment was associated with 19 gene areas [30‒41]: DPYD, NFIA, CORO1C, VWA52B, 
BCL11B-SETD3, ZSWIM6, GGNBP1[41], PALS2, BNIP3L, GLCCI1 [39], TAOK2, 
TCF4, EP300-AS1, ZEB2, ATP2A2, FURIN [30], CEP57-MTMR2 [42], KCNG2-CTDP1 
[43], PCGEM1-SLC44A3P1 [39‒42]. Regarding the association with cognitive abilities 
two independent studies [37, 39] and a meta-analysis [30] indicated 25 SNPs, located 
in 21 identified genes (2 SNPs for TSNARE1, 3 SNPs did not map to the genome). For 
rs13107325 (SLC9A8, 4q24) significant associations were obtained in brain imaging: 
volumetrics of subcortical nuclei, cerebellum and brain stem, as well as cortical thickness 
in general, including temporal lobe [44‒47]. For rs160593 (LIN28B, 6q21) association 
was found for cortical surface area [48]; rs245201 (CCDC192, 5q23.2) was associated 
with functional imaging of dorsolateral prefrontal cortex (dlPFC) [49]. Particular signifi-
cance for language was found for rs4702 (FURIN, 15q26.1), rs62266110 (HSPE1P19-
RNU6448P, 3q11.2) and rs35124509 (EPHA3, 3p11.1), which were associated with 
resting-state functional connectivity of brain language areas [50].

Out of 748 genes associated with schizophrenia, 263 genes were found to be 
associated with educational attainment as well, 193 with cognitive ability, 133 with 
intelligence, and 342 with brain imaging data. Associations with more specific lan-
guage traits were observed for 24 genes. These genes, including their chromosomal 
location, function and evidenced association with language are presented in Table 1.

Table 1. Loci identified in schizophrenia GWAS studies, associated with language features, 
based on GWAS Catalogue (https://www.ebi.ac.uk/gwas/home; retrieved: April 2023)

Gene Chromosomal 
location Function Language 

parameter Citation

ACTG1P22 2p16.1 Actin gamma-1 
pseudogene 22

Language network 
functional connectivity

Mekki Y et al.,  
2022 [50]

AXDND1 1q25.2
Axonemal dynein 
light chain domain 

containing 1
Stuttering Shaw DM et al., 

2021 [53]

CACNA1C 12p13.33
Calcium voltage-gated 

channel
Subunit 1 c

Short-term verbal 
memory

Gialluisi A et al., 
2019 [96]
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table continued on the next page

CALN1 7q11.22 Calneuron 1 Verbal numerical 
reasoning

de la Fuente J et al., 
2020 [52]

ETF1 5q31.2
Eukaryotic translation 

termination
Factor 1

Verbal test score Greenwood TA  
et al., 2019 [97]

FOXO3 6q21 Forkhead box O3 Verbal numerical 
reasoning

de la Fuente J et al., 
2020 [52]

LINC01435 10q25.1
Long intergenic  

non-protein
Coding rna 1435

Cognitive language 
assessment

Homann J et al., 
2022 [58]

LINC02404 12q21.33
Long intergenic  

non-protein
Coding rna 2404

Stuttering Shaw DM et al., 
2021 [53]

LPP 3q28
LIM domain containing 
preferred translocation 

partner in lipoma
Verbal memory Arpawong TE et al., 

2017 [98]

MAGI2 7q21.11

Membrane-associated 
guanylate kinase, 

WW and PDZ domain 
containing 2

Reading ability Davis OS et al., 
2014 [56]

MIR124-2HG 8q12.3 MIR124-2 host gene Verbal memory Debette S et al., 
2014 [100]

PHACTR3 20q13.32 Phosphatase and actin 
regulator 3

Verbal numerical 
reasoning

de la Fuente J et al., 
2020 [52]

SGCZ 8p22 Sarcoglycan zeta Verbal numerical 
reasoning

de la Fuente J et al., 
2020 [52]

TCF20 22q13.2 Transcription factor 20 Language ability Homann J et al., 
2022 [58]

LCORL 4p15.31
Ligand-dependent 
nuclear receptor 

corepressor

Verbal numerical 
reasoning

de la Fuente J et al., 
2020 [52]

NEGR1 1p31.1 Neuronal growth 
regulator 1

Verbal numerical 
reasoning

de la Fuente J et al., 
2020 [52]

SEPTIN3 22q13.2 Septin 3 Verbal numerical 
reasoning

de la Fuente J et al., 
2020 [52]

ARL14EP-DT 11p14.1 ARL14EP divergent 
transcript Dyslexia Doust C et al., 

2022 [54]
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ITIH1 3p21.1
Inter-alpha-trypsin 

inhibitor
heavy chain H1

Verbal learning Lahti J et al., 
2022 [59]

GLI3 7p14.1 Zinc finger protein 
GLI3

Verbal functions in 
elderly

Deters KD et al., 
2017 [57]

2.1. Verbal memory

Verbal memory comprises encoding, storage and retrieval of the verbal mate-
rial, including immediate or delayed recall. A literature review revealed three genes 
sharing a potential common impact on schizophrenia and verbal memory. A study by 
Gialluisi et al. [96] encompassed GWAS of children population with developmental 
dyslexia (DD) and indicated two potential candidate genes: MIR924HG and NKAIN3; 
CACNA1C, rs11062222 SNP did not obtain the GWAS p threshold (p >10-6). Further 
two studies assessed the genetic associations of age-related verbal memory decline in 
the elderly-adult population.

In the work by Arpawong et al. [98], genome-wide significance was obtained for 
TOMM40 and APOE SNPs and delayed verbal recall testing, another APOE SNP was 
also identified by Debette et al. as associated with the delayed recall [100]. To sum up, 
SNPs identified in schizophrenia cohorts did not meet the GWAS statistical threshold 
in studies on verbal memory.

2.2. Verbal numerical reasoning

Verbal numerical reasoning (VNR) has been recently indicated as strongly related 
to schizophrenia genetic background. A combined analysis by Smeland et al. [51] 
(2017) indicated two loci associated with VNR and schizophrenia: TCF20 (22q13.2) 
and SLC39A8 (4q24).

Furthermore, the analysis by de la Funete et al. [52] (2021) identified 7 loci as-
sociated both with schizophrenia and VNR: LCORL (4p15.31), NEGR1 (1p31.1), 
CALN1 (7q11.22), FOXO3 (6q21), PHACTR3 (20q13.22), and SGCZ (8p22), SEPTIN3 
(22q13.2), all of SNPs meet the threshold of GWAS significance (p <10-8).

2.3. Stuttering

We found one GWAS by Shaw et al. [53] (2021) showing potential shared ge-
netic evidence on schizophrenia and stuttering, with two loci: AXDND1 (1q25.2) and 
LINC02404 (12q21.33). The second one met the GWAS threshold of significance at 
rs115024493.
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2.4. Dyslexia

Dyslexia is pervasive neurodevelopmental disorder with reading and linguistic 
disturbances. In two independent GWAS studies [54, 55] three of genes significant for 
schizophrenia were found: EPHA4, ARL14EP-DT, HTT. ARL14EP-DT gene (11p14.1) 
SNPs met the statistical threshold in GWAS study that assessed 51,800 subjects with 
dyslexia and over one million healthy controls [54].

2.5. Other findings

ACTG1P22 identified in schizophrenia GWAS was significantly linked with lan-
guage functional disconnectivity in the study by Mekki et al. [50]. Two other genes 
were linked with reading ability in children (MAGI2) [56] and two with language 
ability (TCF20, GLI3) in individuals with Alzheimer’s disease [57, 58]. GLI3 SNP 
(rs3801203) met statistical threshold for GWAS significance. For verbal learning, study 
by Lahti et al. [59] identified two genes previously found as significant for schizophrenia 
(ITIH1, PRKAG2). For ITIH1 (3p21.1), three SNPs met GWAS statistical significance 
(rs2239551, rs2286798, rs678).

Pathway analysis by Database for Annotation, Visualisation and Integrated Dis-
covery Classification System (DAVID 6.8) [36] revealed engagement of significant 
genes in two categories with potential impact on central nervous system: nerve growth 
factors response and cellular homeostasis (for details see supplementary data: DAVID).

3. Discussion

Despite strong suggestions of the genetic background of language ability in hu-
mans, current evidence stemming from GWAS studies did not show any clear genetic 
architecture of language. From the analysis of the literature we performed, the lin-
guistic background of schizophrenia appears to be complex and polygenic. Out of 14 
identified genes, 10 are known as protein-coding and may be functionally classified 
as: calcium signalling molecules (CACNA1C, CALN1), transcription factors (ETF1, 
FOXO3, TCF20) and cytoskeleton-cell adhesion molecules (AXDND1, LPP, SGCZ, 
PHACTR3, and MAGI2). Engagement of these three groups of biological factors 
suggests the common denominator of language disturbances as the consequence of 
synaptic plasticity and neural network formation impairment.

3.1. Transcription factors and language

The role of transcription factors in language disturbances is exerted by the family of 
forkhead box/winged-helix (FOX) proteins [60]. The FOX family of proteins contains 
a highly conserved DNA-binding domain (forkhead domain) and serves as transcription 
factors in processes of cell differentiation, expression of genes and metabolic coordina-
tion [60]. In the human genome, 17 classes of fox proteins (fox: A to Q) were classified 
with localisation proneness to centromeric and telomeric parts of chromosomes [61].
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Until today, the main candidate gene for linguistic skills and disturbances is seen 
in FOXP2. The transcription factor FOXP2 interacts with multiple gene promoters, 
including CNTNAP2 or DISC1 and has been linked with developmental speech apraxia 
(DAS) and speech-language disorder (SPCH1) [62], moreover, rs10447760 SNP was 
associated in genetic studies on the Chinese population with schizophrenia [63]. FOXP2 
expression change is therefore suggested as the evolutionary switch in modern human 
development leading to language exuberance. However, we did not find direct evidence 
in GWAS studies for an association of FOXP2 with schizophrenia.

Another important gene is FOXO3. It appears that in schizophrenia, mutations 
in this gene cause disruption of the forkhead box protein pathway. The FOXO3 gene 
encodes the Fox-O3 transcription factor, expressed ubiquitously and related to the 
processes of ageing [64]. Due to its structure, it is involved in the cell’s response to 
oxidative stress, apoptosis, cell cycle regulation, as well as in the response to insulin 
and insulin-like growth factor 1 (IGF-1). Studies on PC12 (pheochromocytoma-
derived) cells revealed the impact of clozapine treatment on the phosphorylation status 
of Fox-O3 proteins and potential corticosteroids stress response [65], hence atypical 
neuroleptic action may promote defence mechanisms in neural cells, by inhibiting the 
impact of ageing and stress. Another analysis connects FOXO3 with brain volume. 
A study by Smeland et al. [66], on a large group of patients (n = 82,315), identified 
a polymorphism within FOXO3 (rs10457180) associated with smaller brain volume. 
This suggests a similar process to that seen in dementia, which leads to a systematic 
reduction in brain volume. Among schizophrenia patients, the expression of Fox-O3 
mRNA was also recently found to be altered and related to olanzapine treatment [67].

Another significant gene found in schizophrenia GWAS studies was FOXP1, 
engaged in brain development [68]. The FOXP1 encodes forkhead box protein 
1 transcription factor; mutations in this gene was identified as the cause of FOXP1 
syndrome (FOXP1S) linked with intellectual disability and language delay combined 
with autism spectrum [68].

The abovementioned evidence suggests possible impairments in molecular DNA 
repair mechanisms, which may be related to brain aging processes [69].

3.2. Calcium signalling and language

The role of calcium ions is stressed by their engagement in the action of G pro-
tein-coupled receptors (GPCR) crucial for the central nervous system and serves as 
a therapeutic target in schizophrenia [70]. Calcium signalling also provides excitatory-
inhibitory balance in neural networks due to GABA/glutamate interaction and gen-
erating the proper oscillatory rhythm [71]. Here we put forward two potential genes, 
encoding calcium-related proteins as playing the role in schizophrenia and language.

The first gene ‒ CACNA1C, encoding calcium voltage-gated channel subunit alpha1 
(Cav1.2), has been recognised in genetic association studies as related to schizophrenia, 
major depressive disorder and autism [72].

The Cav1.2 forms a pore through which calcium flows into the cell and initiates 
further signalling cascades regulating gene expression – these involve cAMP response 
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element binding protein (CREB) and Ca2+/calmodulin-dependent protein kinase 
(CaMKII). This pathway is believed to be essential for maintaining long-term neural 
plasticity mechanisms. This pathway is believed to be essential for maintaining long-
term neural plasticity mechanisms. A recent study by Rodan et al. [73] described the 
CACNA1C variant as determining neurodevelopmental delay phenotype combined 
with expressive language dysfunctions. Hence, language decline seems to be the 
trait depending on global disruption of brain development, impacting motoric ability, 
epileptogenesis and autism traits. The broader clinical picture of CACNA1C-derived 
genetic syndrome is recognised as the autosomal dominant Timothy Syndrome defined 
by QT interval prolongation and subsequent cardiac dysrhythmias, syndactyly and 
facial dysmorphic features [74].

The second finding, CALN1 is a protein-coding gene localised on 7q11.22, widely 
expressed in the central nervous system; the encoded product, calneuron 1 protein, 
is thought to be engaged in learning processes [75]. The detailed, molecular role of 
calneuron 1 is not fully understood. It is believed that the protein regulates vesicular 
transport as a part of the trans-Golgi network [76].

3.3. Neural cells adhesion and language

Here, we identified five genes taking part both in schizophrenia and language 
disturbances which may be collectively classified as cell adhesion/cytoskeleton. 
Engagement of this gene group suggests common background based on intracellular 
and intercellular mechanisms of connection shaping and plasticity in neural networks. 
The key role in the disruption of these cellular mechanisms is played by the DISC1 
protein, which occurs in rare cases of hereditary mental illnesses [77]. The Disc1 protein 
serves as a metabolic hub, integrating cell membrane signalling, second messengers 
and cytoskeleton in processes of neuronal migration and neurogenesis (particularly 
in embryonal development) and synaptic plasticity (also in adulthood). It has been 
suggested that mutation of the DISC1 gene causes impaired cAMP signalling and 
increased activity of phosphodiesterase 4 [78], impaired neuronal branching due to 
dynein motor complex interaction [79] and aggregation of Disc1 protein multimers 
among neural cells [77], which results in the occurrence of psychiatric symptoms.

A similar association with the cytoskeleton is seen for AXDND1 and SGCZ gene 
indicated in the review, encoding axonemal dynein light chain and zeta-sarcoglycan 
domain. AXDND1 has been recently recognised as crucial for cytoskeleton motility 
in sperm cells [80], the AXDND1 mRNA is expressed in the brain [81], however, the 
putative role in neuronal cytoskeleton has not been confirmed. In the case of zeta-
sarcoglycan, the molecule is engaged in the dystrophin-associated complex, clinically 
linked with muscular dystrophies [82].

Another mentioned gene, PHACTR3, plays similar cellular roles and was combined 
with the functioning of the central nervous system, including the prefrontal cortex 
structure [83]. Protein phosphatase and actin regulator 3 (phactr) molecules share 
a unique structure containing two motifs: G-acting binding protein and phosphatase-
binding domain [84]; for the phactr3 (scapinin), studies on animal models confirm 
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its impact on axonal and dendritic length [84]. The impact of scapinin on neural cell 
morphogenesis may be associated with its forced activity near the cell membrane [85]. 
Cell membrane activity also links with the MAGI2 gene product (membrane-associated 
guanylate kinase), engaged in AMPA receptors (AMPAR) synaptic trafficking and 
recently linked with neurodevelopmental disorder and epilepsy [86].

In summary, indicated genes take part in neurodevelopment, cell and connection 
shaping, as well as migration. The potential implication to language processing may be 
explained by a global impairment of neural network shaping on the interhemispheric 
level, organisation of language centres in the brain, and finally local anatomic changes 
due to impaired connectivity [87].

4. Summing-up previous GWAS data and recent genome mapping  
in the context of language

Recent results by Trubetskoy et al. [3] strongly underline the role of pre – and 
postsynaptic molecular pathways, previously identified as common in neurodevelop-
mental disorders including autism-spectrum disorder (ASD) [88]. These pathways 
include excitatory-inhibitory balance in neural networks. Genetic studies indicate 
schizophrenia as having high overlap with neurodevelopmental speech disorders and 
autism due to glutamatergic system impairment [89].

The common phenomenon, linking glutamate alterations in neurodevelopment 
with language features is disconnectivity. Altered functional connections were found in 
schizophrenia patients including language brain centres (e.g. Broca’s area) and linked 
with synaptic plasticity deficits. These features may also progress with the course of 
the illness [90, 91].

Language disturbances, may be therefore a consequence of GABA – glutamate 
disequilibrium. Hence, overactive and prone to degeneration cortical neurons with 
concurrent GABA-interneuron hypofunction lead to diminished ability to form neural 
connections [92]. Disconnectivity seems to be a shared mechanism involved in general 
cognitive decline in schizophrenia. From this point of view, language symptoms reflect 
only neural associational alterations and do not emerge as an isolated pathology. GWAS 
studies show the association of schizophrenia diagnosis with major histocompatibility 
complex (MHC) genes and immunological factors (e.g. CD4) [3, 4, 93].

Chronic mild inflammation linked to schizophrenia is proposed as causal pathol-
ogy for negative symptoms. Meta-analysis by Dunleavy et al. [94] (2022) suggests 
proinflammatory cytokines to be dysregulated in schizophrenia with an impact on 
negative symptoms spectrum. Regarding language, negative formal thought disorders 
(nFTD) may be a consequence of inflammatory neurodegeneration. Immunological 
approach should be interpreted having in mind restrictions due to MHC high linkage-
disequilibrium [3]. In addition, other hypotheses should be considered, including 
disturbances of dopamine neurotransmission in the prefrontal cortex (PFC) [99].
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5. Conclusion remarks and limitations

Based on the analysis of available GWAS studies, we have proposed several 
observations regarding the potential biological basis of language impairments in 
schizophrenia.

First, the polygenic structure of schizophrenia suggests that language impairments 
may arise from the interaction of multiple molecular pathways rather than a single 
genetic variant.

We identified several key mechanisms potentially linked to these impairments, 
including calcium signalling, morphogenesis and cell adhesion, and gene expression 
regulation (transcription factors) (Figure 2). Their influence on the central nervous 
system may be significant, but a full explanation requires further research.

Synaptic plasticity alterations may play a role in the language impairments observed 
in schizophrenia. However, the complexity of this process indicates that language-
related symptoms of the disorder may result from the interplay of multiple factors, 
both biological and environmental. It is also important to consider other possible 
explanations, including psychological and social factors, which may impact language 
development and its impairments in schizophrenia.

Our study is not without limitations:
	– We did not conduct our own raw data analyses, relying solely on available 

GWAS study findings.

Figure 2. Suggested mechanism of language impairment in schizophrenia
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	– The gene regions identified as potentially associated with language and schi-
zophrenia require further investigation to confirm their actual role.

	– There is a  lack of large genetic studies specifically focused on language, 
and the limited number of associations exceeding the GWAS significance 
threshold reduces the overall scientific value of the analysis.

	– GWAS findings are based on correlations, meaning they do not establish 
a causal relationship. Despite genetic predispositions, the phenotypic expres-
sion of language-related traits in schizophrenia may be shaped by additional 
factors, such as environment and individual experiences [95].

In summary, the genetic determinants of language impairments in schizophrenia 
should be complemented with psychological and social perspectives to better reflect 
the multidimensional nature of the disorder
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